Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Data ; 11(1): 403, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643276

RESUMEN

Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.


Asunto(s)
Diatomeas , Genoma , Cromatina , Cromosomas , Diatomeas/genética , Genómica , Filogenia
2.
Mar Pollut Bull ; 201: 116198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428045

RESUMEN

Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.


Asunto(s)
Diatomeas , Diatomeas/genética , ADN Ribosómico , Fitoplancton/genética , Secuenciación de Nucleótidos de Alto Rendimiento , China
3.
Infect Dis Poverty ; 13(1): 19, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414088

RESUMEN

BACKGROUND: Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China, the Philippines and Indonesia. Oncomelania hupensis (Gastropoda: Pomatiopsidae) is the unique intermediate host of S. japonicum. A complete genome sequence of O. hupensis will enable the fundamental understanding of snail biology as well as its co-evolution with the S. japonicum parasite. Assembling a high-quality reference genome of O. hupehensis will provide data for further research on the snail biology and controlling the spread of S. japonicum. METHODS: The draft genome was de novo assembly using the long-read sequencing technology (PacBio Sequel II) and corrected with Illumina sequencing data. Then, using Hi-C sequencing data, the genome was assembled at the chromosomal level. CAFE was used to do analysis of contraction and expansion of the gene family and CodeML module in PAML was used for positive selection analysis in protein coding sequences. RESULTS: A total length of 1.46 Gb high-quality O. hupensis genome with 17 unique full-length chromosomes (2n = 34) of the individual including a contig N50 of 1.35 Mb and a scaffold N50 of 75.08 Mb. Additionally, 95.03% of these contig sequences were anchored in 17 chromosomes. After scanning the assembled genome, a total of 30,604 protein-coding genes were predicted. Among them, 86.67% were functionally annotated. Further phylogenetic analysis revealed that O. hupensis was separated from a common ancestor of Pomacea canaliculata and Bellamya purificata approximately 170 million years ago. Comparing the genome of O. hupensis with its most recent common ancestor, it showed 266 significantly expanded and 58 significantly contracted gene families (P < 0.05). Functional enrichment of the expanded gene families indicated that they were mainly involved with intracellular, DNA-mediated transposition, DNA integration and transposase activity. CONCLUSIONS: Integrated use of multiple sequencing technologies, we have successfully constructed the genome at the chromosomal-level of O. hupensis. These data will not only provide the compressive genomic information, but also benefit future work on population genetics of this snail as well as evolutional studies between S. japonicum and the snail host.


Asunto(s)
Gastrópodos , Schistosoma japonicum , Animales , Humanos , Schistosoma japonicum/genética , Filogenia , Gastrópodos/genética , Cromosomas/genética , ADN , China
4.
ISME Commun ; 4(1): ycad009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38313810

RESUMEN

Thalassiosira is a species-rich genus in Bacillariophyta that not only contributes positively as primary producer, but also poses negative impacts on ecosystems by causing harmful algal blooms. Although taxonomical studies have identified a large number of Thalassiosira species, however, the composition of Thalassiosira species and their geographical distribution in marine ecosystems were not well understood due primarily to the lack of resolution of morphology-based approaches used previously in ecological expeditions. In this study, we systematically analyzed the composition and spatial-temporal dynamic distributions of Thalassiosira in the model marine ecosystem Jiaozhou Bay by applying metabarcoding analysis. Through analyzing samples collected monthly from 12 sampling sites, 14 Thalassiosira species were identified, including five species that were not previously reported in Jiaozhou Bay, demonstrating the resolution and effectiveness of metabarcoding analysis in ecological research. Many Thalassiosira species showed prominent temporal preferences in Jiaozhou Bay, with some displaying spring-winter preference represented by Thalassiosira tenera, while others displaying summer-autumn preference represented by Thalassiosira lundiana and Thalassiosira minuscula, indicating that the temperature is an important driving factor in the temporal dynamics. The application of metabarcoding analysis, equipped with appropriate molecular markers with high resolution and high specificity and databases of reference molecular marker sequences for potential all Thalassiosira species, will revolutionize ecological research of Thalassiosira species in Jiaozhou Bay and other marine ecosystems.

5.
Harmful Algae ; 132: 102568, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38331542

RESUMEN

The application of high-throughput sequencing (HTS) technologies has revolutionized research on phytoplankton biodiversity by generating an unprecedented amount of molecular data in marine ecosystem surveys. However, high-level of molecular diversity uncovered in HTS-based metabarcoding analyses may lead to overinterpretation of phytoplankton diversity due to excessive intra-genomic variations (IGVs). The aims in this study are to explore the nature of phytoplankton molecular diversity and to test the hypothesis. We carried out single-cell metabarcoding analysis of 18S rDNA V4 sequences obtained in single Noctiluca scintillans cells isolated from various sites in coastal waters of China. Results showed that each single N. scintillans cell harbored a high level of IGVs with about 100 amplicon sequence variants (ASVs). The large numbers of non-dominant ASVs identified in N. scintillans cells, which might correspond to the larger numbers of ASVs annotated as N. scintillans and showed similar temporal dynamics in metabarcoding analyses, could inflate the inter-species diversity or intra-species genetic diversity. In addition, there were large numbers of additional ASVs that were not annotated as N. scintillans. These non-N. scintillans ASVs might represent diverse preys for N. scintillans, consistent with previous reports that N. scintillans may act as chance predator of a broad-spectrum preys. This single-cell study has unambiguously demonstrated that the existence of high levels of IGVs in N. scintillans and most likely many other phytoplankton species, demonstrating that the majority of the molecular diversity revealed in metabarcoding analysis, which were generally interpreted as the sum of inter-species diversity and intra-species diversity, actually included high levels of IGVs and should be interpreted with caution.


Asunto(s)
Dinoflagelados , Ecosistema , ADN Ribosómico/genética , Dinoflagelados/genética , Fitoplancton/genética , Genómica
6.
Front Microbiol ; 14: 1203780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396366

RESUMEN

To understand the evolution of coscinodiscophycean diatoms, plastome sequences of six coscinodiscophycean diatom species were constructed and analyzed in this study, doubling the number of constructed plastome sequences in Coscinodiscophyceae (radial centrics). The platome sizes varied substantially in Coscinodiscophyceae, ranging from 119.1 kb of Actinocyclus subtilis to 135.8 kb of Stephanopyxis turris. Plastomes in Paraliales and Stephanopyxales tended to be larger than those in Rhizosoleniales and Coscinodiacales, which were due to the expansion of the inverted repeats (IRs) and to the marked increase of the large single copy (LSC). Phylogenomic analysis indicated that Paralia and Stephanopyxis clustered tightly to form the Paraliales-Stephanopyxales complex, which was sister to the Rhizosoleniales-Coscinodiscales complex. The divergence time between Paraliales and Stephanopyxales was estimated at 85 MYA in the middle Upper Cretaceous, indicating that Paraliales and Stephanopyxales appeared later than Coscinodiacales and Rhizosoleniales according to their phylogenetic relationships. Frequent losses of housekeeping protein-coding genes (PCGs) were observed in these coscinodiscophycean plastomes, indicating that diatom plastomes showed an ongoing reduction in gene content during evolution. Two acpP genes (acpP1 and acpP2) detected in diatom plastomes were found to be originated from an early gene duplication event occurred in the common progenitor after diatom emergence, rather than multiple independent gene duplications occurring in different lineages of diatoms. The IRs in Stephanopyxis turris and Rhizosolenia fallax-imbricata exhibited a similar trend of large expansion to the small single copy (SSC) and slightly small contraction from the LSC, which eventually led to the conspicuous increase in IR size. Gene order was highly conserved in Coscinodiacales, while multiple rearrangements were observed in Rhizosoleniales and between Paraliales and Stephanopyxales. Our results greatly expanded the phylogenetic breadth in Coscinodiscophyceae and gained novel insights into the evolution of plastomes in diatoms.

7.
Sci Total Environ ; 897: 165384, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422237

RESUMEN

Diatom species of the genus Skeletonema are dominant in global coastal waters with important roles in marine primary production and global biogeochemical cycling. Many Skeletonema species have been extensively studied also because they can cause harmful algae blooms (HABs) with negative impacts on marine ecosystems and aquaculture. In this study, the first chromosome-level assembly of the genome of Skeletonema marinoi was constructed. The genome size was 64.99 Mb with a contig N50 of 1.95 Mb. Up to 97.12 % of contigs were successfully anchored on 24 chromosomes. Analysis of the annotated genes revealed 28 large syntenic blocks with 2397 collinear gene pairs in the genome of S. marinoi, suggesting large-scale segmental duplication events in evolution. Substantial expansion of light-harvesting genes encoding fucoxanthin-chlorophyll a/c binding proteins, as well as expansion of photoreceptor gene families encoding aureochromes and cyptochromes (CRY) in S. marinoi were found, which may have shaped ecological adaptation of S. marinoi. In conclusion, the construction of the first high-quality Skeletonema genome assembly offers valuable clues on the ecological and evolutionary characteristics of this dominant coastal diatom species.


Asunto(s)
Diatomeas , Diatomeas/genética , Diatomeas/metabolismo , Ecosistema , Clorofila A/metabolismo
8.
Harmful Algae ; 124: 102407, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37164562

RESUMEN

The haptophyceae Phaeocystis globosa is a species responsible for harmful algal blooms in the global ocean, forming blooms in the Beibu Gulf annually since 2011. This species can alternate between solitary free-living cells and colonies. Colonies are the dominant morphotype during blooms. To date, the underlying mechanism of P. globosa blooms in the Beibu Gulf is poorly understood. After combining results of ecological surveys, laboratory studies, and metatranscriptome and bioinformatics analyses, it was found that low temperatures, high nitrate, and low organic phosphorus induced P. globosa blooms in the Beibu Gulf. Additionally, the unique genetic and physiological characteristics that allow P. globosa to stand out as a dominant species in such an environment include (1) several genes encoding high-affinity nitrate transport proteins that could be highly expressed under sufficient nitrate conditions; (2) energy metabolism genes involved in photosynthesis and oxidative phosphorylation that were actively expressed at low temperatures to carry out carbon and energy reversion and produce sufficient ATP for various life activities, individually; (3) abundant glycan synthesis genes that were highly expressed at low temperatures, thus synthesizing large quantities of proteoglycans to construct the mucilaginous envelope forming the colony; (4) cells in colonies exhibited active gene expression in DNA replication contributing to a faster growth rate, which could help P. globosa occupy niches quickly; and (5) the energy and material expenditure was redistributed in colonial cells accompanied with chitin filaments and flagella degraded, more expenditure was used for the synthesis of the mucilaginous envelope and the rapid proliferation.


Asunto(s)
Haptophyta , Nitratos/metabolismo , Floraciones de Algas Nocivas , Fotosíntesis
9.
Front Plant Sci ; 14: 1126175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143870

RESUMEN

To understand the evolutionary driving forces of chloroplast (or plastid) genomes (plastomes) in the green macroalgal genus Ulva (Ulvophyceae, Chlorophyta), in this study, we sequenced and constructed seven complete chloroplast genomes from five Ulva species, and conducted comparative genomic analysis of Ulva plastomes in Ulvophyceae. Ulva plastome evolution reflects the strong selection pressure driving the compactness of genome organization and the decrease of overall GC composition. The overall plastome sequences including canonical genes, introns, derived foreign sequences and non-coding regions show a synergetic decrease in GC content at varying degrees. Fast degeneration of plastome sequences including non-core genes (minD and trnR3), derived foreign sequences, and noncoding spacer regions was accompanied by the marked decrease of their GC composition. Plastome introns preferentially resided in conserved housekeeping genes with high GC content and long length, as might be related to high GC content of target site sequences recognized by intron-encoded proteins (IEPs), and to more target sites contained by long GC-rich genes. Many foreign DNA sequences integrated into different intergenic regions contain some homologous specific orfs with high similarity, indicating that they could have been derived from the same origin. The invasion of foreign sequences seems to be an important driving force for plastome rearrangement in these IR-lacking Ulva cpDNAs. Gene partitioning pattern has changed and distribution range of gene clusters has expanded after the loss of IR, indicating that genome rearrangement was more extensive and more frequent in Ulva plastomes, which was markedly different from that in IR-containing ulvophycean plastomes. These new insights greatly enhance our understanding of plastome evolution in ecologically important Ulva seaweeds.

10.
Microorganisms ; 10(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296304

RESUMEN

Diatoms are responsible for approximately 40% of the global primary photosynthetic production and account for up to 20% of global carbon fixation. Coscinodiscus granii is a red tide forming species of the phylum Bacillariophyta that has been detected in a wide range of coastal regions, suggesting the possibility of the existence of high genetic diversity with differential adaptation. Common molecular markers including 18S rDNA, 16S rDNA, ITS, cox1, and rbcL do not provide sufficient resolution for distinguishing intra-species genetic diversity, hindering in-depth research on intra-species genetic diversity and their spatial and temporal dynamics. In this project, we aimed to develop molecular markers with high resolution and specificity for C. granii, attempting to identify different taxa of this species, which will set up a stage for subsequent functional assays. Comparative genomics analysis of the mtDNAs of C. granii strains identified a genomic region with high genomic variations, which was used to guide the development of a molecular marker with high resolution and high specificity. This new molecular marker, which was named cgmt1 (C. granii mitochondrial 1), was 376 bp in size and differentiated C. granii samples collected in coastal regions of China into three different clades. Preliminary analysis of field samples collected in various coastal regions in China revealed that C. granii clades were almost exclusively found in the Bohai Sea and the north Yellow Sea. This newly developed molecular marker cgmt1 could be used for tracking intra-species genetic diversity and biogeographic distribution of C. granii in different ecosystems.

11.
Microorganisms ; 10(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36144324

RESUMEN

A sudden large-scale bloom event of the haptophyte Phaeocystis globosa that lasted over one month in the winter of 2021 was observed offshore Qingdao, China. This P. globosa bloom event was unusual as it was the first P. globosa bloom recorded in Qingdao offshore. Furthermore, the temperature at which this event occurred was much lower than that of previous P. globosa blooms in China. We hypothesize that the P. globosa strains that drove the development of this bloom offshore Qingdao were genetically unique and have a competitive advantage in the environmental conditions. To test this hypothesis, we analyzed P. globosa genetic diversity and the temporal dynamics of the bloom, using the high-resolution molecular markers pgcp1 and cox1 that we developed recently. The analysis revealed that the genetic compositions of P. globosa offshore Qingdao were rather limited, containing two dominant genotypes and other rare genotypes with low abundance, representing a small portion of the genetic diversities identified in coastal waters in China, and were rather different from the P. globosa genotypes outside of the Jiaozhou Bay before the P. globosa bloom in the winter of 2021. This suggested only certain strains contribute to the development of blooms under certain environmental conditions. The genetic composition may indicate the unusual timing and scale of this P. globosa event.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36011659

RESUMEN

The Bacillariophyceae is a species-rich, ecologically significant class of Bacillariophyta. Despite their critical importance in marine ecosystems as primary producers and in the development of harmful algal blooms (HABs), taxonomic research on Bacillariophyceae species has been hindered because of their limited morphological features, plasticity of morphologies, and the low resolution of common molecular markers. Hence molecular markers with improved resolution are urgently needed. Organelle genomes, which can be constructed efficiently with the recent development of high throughput DNA sequencing technologies and the advancement of bioinformatics tools, have been proposed as super barcodes for their higher resolution for distinguishing different species and intra-species genomic variations. In this study, we tested the value of full-length chloroplast genomes (cpDNAs) as super barcodes for distinguishing diatom species, by constructing cpDNAs of 11 strains of the class Bacillariophyceae, including Nitzschia ovalis, Nitzschia traheaformis, Cylindrotheca spp., Psammodictyon constrictum, Bacillaria paxillifer, two strains of Haslea tsukamotoi, Haslea avium, Navicula arenaria, and Pleurosigma sp. Comparative analysis of cpDNAs revealed that cpDNAs were not only adequate for resolving different species, but also for enabling recognition of high levels of genome rearrangements between cpDNAs of different species, especially for species of the genera Nitzschia, Cylindrotheca, Navicula and Haslea. Additionally, comparative analysis suggested that the positioning of species in the genus Haslea should be transferred to the genus Navicula. Chloroplast genome-based evolutionary analysis suggested that the Bacillariophyceae species first appeared during the Cretaceous period and the diversity of species rose after the mass extinction about 65 Mya. This study highlighted the value of cpDNAs in research on the biodiversity and evolution of Bacillariophyceae species, and, with the construction of more cpDNAs representing additional genera, deeper insight into the biodiversity and evolutionary relationships of Bacillariophyceae species will be gained.


Asunto(s)
Diatomeas , Genoma del Cloroplasto , ADN de Cloroplastos/genética , Diatomeas/genética , Ecosistema , Evolución Molecular , Filogenia
13.
Harmful Algae ; 114: 102217, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550291

RESUMEN

Phaeocystis globosa is an ecologically important haptophyte that can form harmful algal blooms (HABs). In this study, we used 16S rDNA V3-V4 amplicon sequencing data to explore the ecological mechanisms underlying a P. globosa bloom in the Beibu Gulf, China. Using field samples collected from three time points of a bloom, we observed a distinct succession in the bacteria, archaea and phytoplankton community composition throughout the bloom. We also observed temporal variation in response to the bloom at the nucleotide level, which supports a previously underappreciated amount of intragroup variation in the niches taken up by microbes during HABs. We developed a preliminary model for the development and progression of the P. globosa bloom using the spatial-temporal dynamics of P. globosa and the bacteria, archaea, phytoplankton and environmental variables. We also identified microbes with putative interactions with P. globosa during the bloom by identifying microbes correlated with P. globosa in interaction networks, identifying particle-associated microbes and exploring the P. globosa colony microbiome using sequences from whole P. globosa colonies collected during the bloom. This study revealed novel insight into the development of P. globosa HABs and many testable hypotheses that will guide future research on the mechanisms of P. globosa HABs.


Asunto(s)
Haptophyta , Microbiota , China , Floraciones de Algas Nocivas , Fitoplancton
14.
Front Plant Sci ; 13: 749982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401648

RESUMEN

Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically significant groups of phytoplankton, comprising 100,000-200,000 species in three classes Bacillariophyceae, Mediophyceae, and Coscinodiscophyceae. However, due to the limited resolution of common molecular markers including 18S rDNA, 28S rDNA, ITS, rbcL, and cox1, diatom biodiversity has not been adequately ascertained. Organelle genomes including mitochondrial genomes (mtDNAs) have been proposed to be "super barcodes" for distinguishing diatom species because of their rich genomic content, and the rapid progress of DNA sequencing technologies that has made it possible to construct mtDNAs with increasing throughout and decreasing cost. Here, we constructed complete mtDNAs of 15 diatom species including five Coscinodiscophyceae species (Guinardia delicatula, Guinardia striata, Stephanopyxis turris, Paralia sulcata, and Actinocyclus sp.), four Mediophyceae species (Hemiaulus sinensis, Odontella aurita var. minima, Lithodesmioides sp., and Helicotheca tamesis), and six Bacillariophyceae species (Nitzschia ovalis, Nitzschia sp., Nitzschia traheaformis, Cylindrotheca closterium, Haslea tsukamotoi, and Pleurosigma sp.) to test the practicality of using mtDNAs as super barcodes. We found that mtDNAs have much higher resolution compared to common molecular markers as expected. Comparative analysis of mtDNAs also suggested that mtDNAs are valuable in evolutionary studies by revealing extensive genome rearrangement events with gene duplications, gene losses, and gains and losses of introns. Synteny analyses of mtDNAs uncovered high conservation among species within an order, but extensive rearrangements including translocations and/or inversions between species of different orders within a class. Duplication of cox1 was discovered for the first time in diatoms in Nitzschia traheaformis and Haslea tsukamotoi. Molecular dating analysis revealed that the three diatom classes split 100 Mya and many diatom species appeared since 50 Mya. In conclusion, more diatom mtDNAs representing different orders will play great dividends to explore biodiversity and speciation of diatoms in different ecological regions.

15.
BMC Genomics ; 23(1): 327, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477350

RESUMEN

The cosmopolitan Thalassionema species are often dominant components of the plankton diatom flora and sediment diatom assemblages in all but the Polar regions, making important ecological contribution to primary productivity. Historical studies concentrated on their indicative function for the marine environment based primarily on morphological features and essentially ignored their genomic information, hindering in-depth investigation on Thalassionema biodiversity. In this project, we constructed the complete chloroplast genomes (cpDNAs) of seven Thalassionema strains representing three different species, which were also the first cpDNAs constructed for any species in the order Thalassionematales that includes 35 reported species and varieties. The sizes of these Thalassionema cpDNAs, which showed typical quadripartite structures, varied from 124,127 bp to 140,121 bp. Comparative analysis revealed that Thalassionema cpDNAs possess conserved gene content inter-species and intra-species, along with several gene losses and transfers. Besides, their cpDNAs also have expanded inverted repeat regions (IRs) and preserve large intergenic spacers compared to other diatom cpDNAs. In addition, substantial genome rearrangements were discovered not only among different Thalassionema species but also among strains of a same species T. frauenfeldii, suggesting much higher diversity than previous reports. In addition to confirming the phylogenetic position of Thalassionema species, this study also estimated their emergence time at approximately 38 Mya. The availability of the Thalassionema species cpDNAs not only helps understand the Thalassionema species, but also facilitates phylogenetic analysis of diatoms.


Asunto(s)
Diatomeas , Genoma del Cloroplasto , Biodiversidad , Cloroplastos/genética , ADN de Cloroplastos/genética , Diatomeas/genética , Evolución Molecular , Filogenia
16.
Water Res ; 218: 118488, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35489150

RESUMEN

The Jiaozhou Bay as a model marine ecosystem in China has been intensively investigated over the last 90 years. However, detailed phytoplankton community composition, spatial-temporal dynamics, and its assembly mechanism were still unclear. To address these, we systematically examined the composition and spatial-temporal dynamics of phytoplankton in the Jiaozhou Bay through high-throughput sequencing of 18S rDNA V4. Analysis of 468 samples from 12 sampling sites over one full year revealed much higher phytoplankton diversity than previous reports, and strong seasonal succession patterns. Some phytoplankton also showed spatial variations, although the phytoplankton community didn't show significant distance-decay pattern. Environmental factors (especially temperature), species-species interrelationships and unique resting stages were uncovered to be the main contributors instead of stochastic process in shaping the phytoplankton community assembly. The overwhelming positive correlations between phytoplankton and other protists suggested that coevolution might be critical in this marine ecosystem. Complementary distributions of different amplicon sequence variants (ASVs) of same genera, such as Skeletonema marinoi (ASV_2) and Skeletonema tropicum (ASV_263) of the genus Skeletonema, suggested that phytoplankton have evolved differentially to exploit a wide range of ecological niches. This study laid a solid foundation for asertaining phytoplankton composition and spatial-temporal dynamics in temperate seawaters and mechanisms underlying phytoplankton community assembly, allowing in-depth studies of marine ecology.


Asunto(s)
Diatomeas , Fitoplancton , Bahías , China , Ecosistema , Estaciones del Año , Agua de Mar
17.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35188189

RESUMEN

Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromosome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with 3 published soybeans (WM82, ZH13, and W05), which identified 5 large inversions and 2 large translocations specific to JD17, 20,984-46,912 presence-absence variations spanning 13.1-46.9 Mb in size. A total of 1,695,741-3,664,629 SNPs and 446,689-800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.


Asunto(s)
Fabaceae , Glycine max , Fabaceae/genética , Genoma de Planta , Genómica , Mutación INDEL , Polimorfismo de Nucleótido Simple , Glycine max/genética
18.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38116826

RESUMEN

The Pacific geoduck Panopea generosa (class Bivalvia, order Adapedonta, family Hiatellidae, genus Panopea) is the largest known burrowing bivalve with considerable commercial value. Pacific geoduck and other geoduck clams play important roles in maintaining ecosystem health for their filter feeding habit and coupling pelagic and benthic processes. Here, we report a high-quality chromosome-level genome assembly of P. generosa to characterize its phylogeny and molecular mechanisms of its life strategies. The assembled P. generosa genome consists of 19 chromosomes with a size of 1.47 Gb, a contig N50 length of 1.6 Mb, and a scaffold N50 length of 73.8 Mb. The BUSCO test of the genome assembly showed 93.0% completeness. Constructed chromosome synteny revealed many occurrences of inter- and intrachromosomal rearrangements between P. generosa and Sinonovacula constricta. Of the 35,034 predicted protein-coding genes, 30,700 (87.6%) could be functionally annotated in public databases, indicating the high quality of genome annotation. Comparison of gene copy numbers of gene families among P. generosa and 11 selected species identified 507 rapidly expanded P. generosa gene families that are functionally enriched in immune and gonad development and may be involved in its complex survival strategies. In particular, genes carrying the copine domains underwent additional duplications in P. generosa, which might be important for neuronal development and immune response. The availability of a fully annotated chromosome-level genome provides a valuable dataset for genetic breeding of P. generosa.


Asunto(s)
Bivalvos , Familia de Multigenes , Animales , Bivalvos/genética , Cromosomas/genética , Genoma , Anotación de Secuencia Molecular , Filogenia , Dosificación de Gen
19.
Front Plant Sci ; 12: 774617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966403

RESUMEN

Skeletonema species are cosmopolitan coastal diatoms that exhibit important roles in ecological system. The chloroplast genomes (cpDNAs) have been proven to be important in the study of molecular evolution and genetic diversity. However, cpDNA of only a single Skeletonema species (S. pseudocostatum) has been constructed, hindering in-depth investigation on Skeletonema species. In this study, complete cpDNAs of five Skeletonema species were constructed with cpDNAs of four species S. marinoi, S. tropicum, S. costatum, and S. grevillea constructed for the first time. These cpDNAs had similar sizes and same numbers of genes. These cpDNAs were highly syntenic with no substantial expansions, contractions, or inversions. Interestingly, two copies of petF, which encodes ferredoxin with critical role in iron dependency, were found in all five Skeletonema species, with one copy in the cpDNA and another copy in the nuclear genome of each species. Selection analysis revealed that all PCGs of cpDNAs were undergoing purifying selection. Despite the high conservation of these cpDNAs, nine genomic regions with high sequence divergence were identified, which illustrated substantial variations that could be used as markers for phylogenetic inference and for tracking Skeletonema species in the field. Additionally, the numbers of simple sequence repeats varied among different cpDNAs, which were useful for detecting genetic polymorphisms. The divergence times estimated using PCGs of cpDNAs revealed that most of these species were established within ∼33 Mya, consistent with that estimated using mtDNAs. Overall, the current study deepened our understanding about the molecular evolution of Skeletonema cpDNAs.

20.
Artículo en Inglés | MEDLINE | ID: mdl-34770163

RESUMEN

Many Margalefidinium species are cosmopolitan harmful algal bloom (HAB) species that have caused huge economic and ecological damage. Despite extensive research on Margalefidinium species, the biodiversity and spatial-temporal dynamics of these species remain obscure. Jiaozhou Bay is an ideal area for HAB research, being one of the earliest marine survey areas in China. In this study, we carried out the first metabarcoding study on the temporal and spatial dynamics of Margalefidinium species using the 18S rDNA V4 region as the molecular marker and samples collected monthly at 12 sampling sites in Jiaozhou Bay in 2019. Two harmful Margalefidinium species (M. polykrikoides and M. fulvescens) were identified with potentially high genetic diversity (although we cannot rule out the possibility of intra-genome sequence variations). Both M. polykrikoides and M. fulvescens demonstrated strong temporal preference with a sharp peak of abundance in early autumn (September), but without showing strong location preference in Jiaozhou Bay. Our results revealed that temperature might be the main driver for their temporal dynamics. Knowledge of biodiversity and spatial-temporal dynamics of the Margalefidinium species may shed light on the understanding of mechanisms underlying strongly biased occurrences of Margalefidinium blooms recorded globally.


Asunto(s)
Bahías , Dinoflagelados , Biodiversidad , China , Floraciones de Algas Nocivas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...